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ABSTRACT
In Iran, breast cancer (BC) is the most prevalent cancer among women. The standard treatment
for this cancer is partial or total removal of breast tissue, followed by chemotherapy and radi-
ation. Tissue engineering (TE) has made new treatments for tissue loss in these patients by cre-
ating functional substitutes in the laboratory. In addition, cancer biology combined with TE
provides a new strategy for evaluation of anti-BC therapy. Several innovations in TE have led to
the design of scaffold or matrix based culture systems that more closely mimic the native extra-
cellular matrix (ECM). Currently, engineered three-dimensional (3D) cultures are being developed
for modelling of the tumour microenvironment. These 3D cultures fulfil the need for in vitro
approaches that allow an accurate study of the molecular mechanisms and a better analysis of
the drugs effect. In the present study, we review recent developments in utilising of TE in BC.
Moreover, this review describes achievements of Iranian researchers in the field of breast TE.
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1. Introduction

In Iran, breast cancer (BC) is the most prevalent cancer
among women, with comprising 24.6% of all cancers
with age-standardised rate (ASR) of 22.6 per 100,000
[1]. This cancer is the first cause of death in less devel-
oped countries (324,000 deaths, 14.3%), and the
second in more developed countries (198,000 deaths,
15.4%) [2]. The majority of cases in Iran are diagnosed
at early stages, and the prevalence of advanced stage
(stage III) is reported to be 17% [3]. For this cancer,
the standard treatment is Lumpectomy (partial
removal of the breast tissue) or mastectomy (total
removal of the breast tissue), followed by chemother-
apy and radiation [4,5].

Tissue engineering (TE) has made new treatments
for tissue loss in these patients by creating functional
substitutes in the laboratory. In addition, different
innovations in the context of TE also provided new
technology platforms to study mechanisms of tumour
cell growth and tumour cell spreading in cancer
research. TE models of cancer attempt to mimic can-
cer tissues by including cells and extracellular matrix
(ECM) in a three-dimensional (3D) arrangement [6,7].
These 3D cultures fulfil the need for in vitro

approaches that allow an accurate study of the
molecular mechanisms of cancer initiation and a bet-
ter analysis of the drug effect [8,9]. In the present
study, we review recent developments in utilising of
TE in BC. Moreover, this review describes achieve-
ments of Iranian researchers in the field of breast TE.

2. Tissue engineering and breast
reconstruction

Breast reconstruction is a valuable option to any
woman undergoing surgery. However, there are differ-
ent complications. A majority of breast reconstructions
are performed by using silicone-based implants or
autologous tissue transplantation [8]. It is known that
reconstruction using implants leads to the formation
of a stiff fibrous tissue surrounding the implant over
time and give the unusual appearance to the breast.
Since breast implants also have a cosmetic function,
its need a variety of factors to achieve an ideal surgi-
cal outcome [8,9]. Reconstruction using autologous tis-
sue is also associated with long-term resorption and
tissue necrosis [10,11]. Research is therefore focussed
on breast TE. This field combines engineering, cell
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biology, biomaterials and plastic surgery in order to
reconstruct breast following mastectomy [12].
Adipose-derived stem cells (ADSCs) are rapidly becom-
ing the standard cell source for TE. These cells are
suitable for breast reconstruction due to their charac-
teristics such as proliferative and differentiation cap-
acity along with stromal support of cancer cells and
delivery of growth factors. These cells can be easily
isolated from subcutaneous adult adipose tissue after
liposuction by enzymatic digestion and culture of the
stromal vascular fraction (SVF). However, the onco-
logical safety of implanting ADSCs into patients with
BC due to the risk of cancer recurrence remains to be
fully elucidated [10,11].

In a study, Wu et al. [12] prepared self-assembling
RADA16-I peptide hydrogel scaffold loaded with tam-
oxifen for breast reconstruction. The ADSCs isolated
from liposuction were attached to the scaffold. The
results suggested that this scaffold provide support for
ADSCs cells attachment/proliferation and retain cyto-
toxic effect on MCF-7 cells, which might be a promis-
ing therapeutic breast tissue following lumpectomy.
Schusterman et al. [13] reported a novel method of
breast reconstruction using a 3D absorbable mesh
scaffold and subsequent autologous fat grafting (AFG).
Twenty-two patients underwent reconstruction and all
patients were satisfied with final breast shape and
size. Postoperative mammogram and magnetic reson-
ance imaging revealed robust adipose tissue in the
breast with a gradually resorbing mesh and no oil
cysts or calcifications. Recently, Baldwin et al. [14]
developed a novel tannic acid-collagen type I inject-
able bead scaffold material for breast reconstruction
post lumpectomy in an in vivo rat model. Tannic acid
is a polyphenol with anticancer and antibiotic proper-
ties. After 12 weeks, implants showed incorporation
into native tissue with no fibrous encapsulation.
Despite the presence of inflammatory cells in the
remaining beads, fat tissue growth and collagen redis-
tribution were observed within the beads over
12 weeks, showing incorporation within native sub-
cutaneous tissue and indicating good biocompatibility
and bioactivity of the implant.

3. Scaffold-based tissue engineering in
breast cancer

The innovative in TE was application and fabrication
of scaffolds that are needed in tumour microenviron-
ment engineering for effective cell seeding. Scaffolds
that have been used in TE adipose tissue can be div-
ided by origin into natural or synthetic and by

structure into solid scaffolds or hydrogels [15]. Some
materials, such as Matrigel, collagen, fibronectin, gel-
atine, alginate, chitosan and silk fibroin are derived
from natural resources, whereas others are generated
from synthetic materials using polycaprolactone
(PCL), poly lactic-co-glycolic acid (PLGA), poly ethyl-
ene glycol (PEG) and hydroxyapatite (HA) [16].
Different scaffolds that are used in BC study are listed
in Table 1.

The environment-mimicking 3D cultures have
shown advantages in the studies of tumour cell biol-
ogy. 3D scaffolds can mimic the ECM of connective tis-
sues and provide architectural support for TE and
regeneration with selecting of cell types [31].

4. Tissue engineering and breast
cancer therapy

Cancer biology combined with TE provides a new
strategy for evaluation of anti-BC therapy. BC initi-
ation and progression require interactions between
mammary epithelial cells and their surrounding
microenvironment, including the ECM [32,33]. In BC,
major changes are observed in the ECM structure in
comparison to normal breast tissues (Table 2).
Woodward et al. [53] proposed that the drug therapy
sensitivity of BC can increase by changing the ECM
components. Moreover, the matrix composition can
be used to deliver drugs. Mårlind et al. [54] showed
that antibody-mediated delivery of interleukin-2 (IL-
2) to the stroma of BC strongly increases the
potency of chemotherapy and treatment with IL-2
synergised with paclitaxel therapy can repress
tumour growth.

Currently, in the field of TE, increasing interest is
emerging in artificial ECM as an applicable scaffold
that can mimic native ECM [55]. Therefore, artificial
ECMs should be designed by adopting the real chem-
ical complexity and structure of a native ECM.
Moreover, in recent years, drug delivery systems are
rapidly evolving for cancer therapy. In a study by
Subia et al. [56], a 3D silk fibroin scaffold based co-cul-
ture model was designed to observe the interactions
of the BC cells within the bone microenvironment.
The effects of targeted delivery of doxorubicin loaded
folate conjugated fibroin nanoparticles (NPs) on the
cancer cell growth in co-culture construct were
observed. The co-culture of cancer cells with the
osteoblast-like cells displayed the decreased popula-
tion of the cancer cells, invasiveness and angiogenesis
after the treatment.
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5. Tissue engineering and breast
cancer research

One of the challenges in cancer research is to develop
in vitro models of human tumours. One special focus
that has emerged from TE research is the develop-
ment of nanoscale drug delivery systems using lipo-
somes and nanoparticles (NPs) to facilitate the rational
delivery of chemotherapeutic drugs in the treatment
of malignant diseases. Recent developments have led
to multifunctional NPs capable of targeting and con-
trolled release of therapeutic and diagnostic agents.

Among the published methods, short-peptide-based
molecular hydrogels formed by biocompatible meth-
ods have been claimed to hold a potential for TE and
controlled drug delivery [57,58].

In addition, one of the novel clinical approaches to
tackle BC is the engineering of dormant stage.
Dormancy has been implicated with cell cycle arrest
and drug resistance [59]. Primary breast tumours can
transform to invasive BC and this transformation is
also known as epithelial–mesenchymal transition
(EMT) [60]. During EMT, the BC cells lose their polarity

Table 1. Different scaffolds that are used in breast cancer (BC) study.
Type of scaffold Application

Polyurethane (PU) foam scaffold [17] To reproduce a bone biomimetic microenvironment, useful for the co-culture of
human osteoblasts/BC tumour-initiating cells and to investigate their
interaction

Nanoclay-based [18] To study mechanisms governing the later stage of cancer pathogenesis in bone
Human decellularised adipose tissue scaffold (hDAM) [19] To provide BC cells with a biomimetic microenvironment in vitro that more

closely mimics the in vivo microenvironment and thus can provide vital
information for the characterisation of cancer cells and screening of cancer
therapeutics

Porous PLGA/PLA microparticles [20] To use as a model system for preclinical evaluation of the cytotoxic effect of
anticancer agents

Silk scaffold [21] To provide an important first step for bioengineering an informative human
breast tissue system to study normal breast morphogenesis and neoplastic
transformation

Collagen coated gelatine nanofibrous matrix (CCGM) [22] To use as a tissue-like 3D model for studying BC metastatic events in vitro
Photocrosslinked PEG scaffolds [23] To provide insight into the potential for oncogene-transformed cells to migrate

within and colonise tissues of varying stiffness
Hydroxyapatite (HA) nanoparticle-containing scaffolds [24] To study cancer biology and to define design parameters for non-tumorigenic

mineral-containing or mineralised matrices for bone regeneration
Electrospun polycaprolactone–chitosan nanofiber scaffolds [25] BC stem-like cells (BCSC) populations are enriched in cells cultured on

electrospun poly(e-caprolactone)-chitosan nanofibers, scaffolds that may
provide a useful system to study BCSC and their response to anticancer
drug treatment

3D printed nanocomposite matrix [26] To study metastasis and assessing drug sensitivity in BC
Multi-walled carbon nanotube scaffolds [27] To use in vitro metastasis studies of BC cell lines
Poly(e-caprolactone) (PCL) fibres [28] To study how the 3-D microenvironment affects the behaviour of BCCs
Free agarose hydrogels [29] To allow for the formation of more differentiated, estrogen-responsive

structures that are a more relevant system for evaluation of oestrogenic
compounds than traditional 2D models

Human-fibronectin (MB-FN3VEGFR2) scaffold [30] To use in ultrasound molecular imaging (USMI) of BC neoangiogenesis

Table 2. ECM components in breast cancer (BC) in comparison to normal breast tissues.
Collagens Increased accumulation of fibrillar collagens I, III and V, and decreased of

type IV collagen in BC [34,35]
Fibronectin Upregulation in cancer cells [36]
Laminins (LM) Loss of expression of LM-111 in BC [37]
Hyaluronan (HA) Increased in BC in comparison to normal breast tissues [38]
Versican Increased accumulation within the ECM of peritumoural stroma [39,40]
Decorin Increased expression in the normal mammary gland and reduced

expression in BC [41,42]. Decorin is tumour suppressor [43].
Lumican Low lumican expression is associated with poor overall survival in BC.

Lumican is tumour suppressor [44].
Syndecan-1 (SDC-1) Expression of SDC-1 in the stroma of BC predicts poor overall

survival [45].
Glypican-1 (GPC1) Increased expression in BC in comparison to normal breast tissues [46]
Tenascin C (TNC) Very low expression in healthy mammary glands while highly up

regulated in BC especially at invasive fronts [47,48]
Periostin (POSTN) Increased expression in BC compared to normal human breast tissues [49]
Secreted protein, acidic and rich in cysteine (SPARC) Increased expression in BC compared to normal breast tissue. Expression

of SPARC is also linked to poor clinical outcome [50,51]
Thrombospondin (THBS) In BC models, THBS1 leads to inhibition of primary tumour growth [52]
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and specialised E-cadherin-based cell–cell contacts,
and they acquire a migratory phenotype, which is
associated with an increase in metastatic potential
[61]. It is established that dormant tumour cells can
stay in a non-dividing level for many years with
chemo resistance and radiation resistance characteris-
tics [62]. There is a growing need to understand this
mechanism of dormancy in order to develop therapies
to target these cells [63,64]. In recent years, several
researchers have demonstrated 3D models of cancer
cell dormancy [28,65,66]. For example, Marlow et al.
[65] fabricated a 3D co culture model by culturing
mesenchymal stem cells (MSCs) together with endo-
thelial cells (ECs) and BC cells in a 3D collagen matrix.
BC cells in co cultures proliferated less than in mono-
cultures and appeared to be cell cycle arrested.
Recently, Cui et al. [67] reported engineering a novel
3D printed vascularised tissue model for investigating
BC metastasis to bone. They demonstrated that the
3D printed tissue construct by incorporating multiple
cells and various ink matrices can provide a suitable
model for studying the interaction between these cells
in a complex vascular microenvironment. Therefore, it
will be helpful for the screening of novel anti-
cancer drugs.

6. Breast tissue engineering in Iran

Currently, many universities and research institutes in
Iran are conducting active research in the field of TE.
The most studies are in the fields of bone and neural
TE [68]. However, in recent years, Iranian researchers
had achievements in the field of breast TE including
breast reconstruction and tumour models for anti-
cancer therapy.

Nafisi et al. [69] published a paper describing the
use of acellular dermal matrices (ABDMs) in implant-
based breast reconstruction. They conclude that the
application of ABDMs has promising outcomes for
breast reconstruction to provide total coverage with-
out the need for breast expansion before implant
placement. In a study by Mahmoudzadeh and
Mohammadpour [70], the impact of cultured 4T1 can-
cer cells, which mimics stage IV of human BC, was
examined in a 3D collagen–chitosan scaffold. Their
study indicated that collagen–chitosan nanoscaffolds
provide a suitable model for tumour studies. In a
study that was conducted by Maroufi et al. [71], the
potential application of compritol was investigated as
a major scaffold into nanostructured lipid careers to
highlight myricetin efficiency in treatment of BC cells
along with codelivery of docetaxel (DXT). Their results

represented that the nanostructured lipid carriers
(NLCs) delivery system could be a promising strategy
to improve the effect of anticancer agents such as
DXT on BC. Researchers from Shiraz University of
Medical Sciences investigated the expressions of insu-
lin-like growth factor-1 (IGF-1), hepatocyte growth fac-
tor (HGF), vascular endothelial growth factor (VEGF)
and CXCL8 (IL-8) in BC cells and ADSCs isolated from
breast tissue of women with BC. Their results showed
that the presence of resident ASCs within the scaffold
of breast tissue may support breast tumour growth
and progression through the expressions of tumour
promoting factors [72].

7. Conclusions

TE provides a promising mean to further understand
BC aetiology. A model that can mimic different stages
of BC metastasis might be a potential option for
future studies. This model will provide a platform for
analysing the different stages during disease progres-
sion. Another future interesting direction would be
design biomimetic scaffolds that align scaffolds with
biomolecules for investigating BC biological processes.
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